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Unsteady flow over a stationary sphere with small fluctuations in the free-stream 
velocity is considered at finite Reynolds number using a finite-difference method. 
The dependence of the unsteady drag on the frequency of the fluctuations is 
examined at various Reynolds numbers. It is found that the classical Stokes solution 
of the unsteady Stokes equation does not correctly describe the behaviour of the 
unsteady drag at low frequency. Numerical results indicate that the force increases 
linearly with frequency when the frequency is very small instead of increasing 
linearly with the square root of the frequency as the classical Stokes solution 
predicts. This implies that the force has a much shorter memory in the time domain. 
The incorrect behaviour of the Basset force at  large times may explain the 
unphysical results found by Reeks & Mckee (1984) wherein for a particle introduced 
to a turbulent flow the initial velocity difference between the particle and fluid has 
a finite contribution to the long-time particle diffusivity. The added mass component 
of the force at  finite Reynolds number is found to be the same as predicted by 
creeping flow and potential theories. Effects of Reynolds number on the unsteady 
drag due to the fluctuating free-stream velocity are presented. The implications for 
particle motion in turbulence are discussed. 

1. Introduction 
A small spherical particle suspended in a turbulent flow experiences both steady 

and unsteady forces. The equation describing the particle motion in the Stokes flow 
regime under these forces has recently been derived based on the fist principles of 
mechanics by Maxey & Riley (1983). With the Faxen forces neglected, Maxey & 
Riley's equation is 

d(u - V) Du + 3 d p p I  ~ +@3p,- (1) 
dt' Dt' ' 

where pp, pr, v and u are the densities and the velocities of the particle and the fluid, 
u is the particle radius, ,u and v are the dynamic and kinematic viscosities of the fluid, 
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g is the gravitational acceleration, and t’ is the dimensional time. The first term on 
the right-hand side is the body force due to gravity and buoyancy; the second is the 
Stokes drag ; the third is the Basset force first derived by Basset (1888) in the time 
domain, representing the memory effect on the particle motion; the fourth is the 
force due to the added mass ; and the last term results from the acceleration of the 
local fluid element. Here, d/dt refers to the time derivative on the particle trajectory 
and D/Dt = a/at+u.V refers to the acceleration evaluated on the fluid trajectory. 
The last term in (1)  is the same as the resultant force due to the stresses which would 
be exerted on the surface of a fluid element if it occupied the particle volume. A 
similar equation was proposed by Tchen (1947) with a minor difference in the last 
term. The expressions for the Stokes drag, Basset history force and the force due to 
the added mass in equation ( 1 )  can be obtained from the classical Stokes solution of 
the unsteady Stokes (1851) equation for the flow due to a sinusoidally oscillating 
sphere in an otherwise quiescent fluid. The unsteady drag in such a situation can be 
found in Landau & Lifshitz (1959, p. 96) as 

(2 1 
where U, and w are the amplitude and frequency of the oscillation. The first term 
inside the square bracket corresponds to the instantaneous Stokes drag. It is 
independent of w .  The second term is the Basset force in the frequency domain. It is 
proportional to the square root of the frequency. The third term is the force due to 
the added mass, and it is proportional to the frequency. Fourier transformation of 
(2) leads to the corresponding expression for the unsteady drag in the time domain 
as i t  appears in (1).  

Maxey & Riley’s equation (l) ,  or Tchen’s equation, has been widely used as a basic 
starting point to study the motion of very small particles in general, particularly in 
turbulent flows, though the results of Auton, Hunt & Prud’homme (1988) for inviscid 
flow suggest that the fluid acceleration in the added mass term, du/dt, should be 
replaced by Du/Dt at large Reynolds number Re. In a recent paper by Reeks & 
Mckee (1984), the influence of the Basset force on particle dispersion in turbulence 
was investigated. It was found that when the Basset force was kept in the equation 
governing the particle motion, the velocity difference between the fluid and the 
particle at  the instant when the particle was introduced to the flow has a finite 
contribution to the long-time particle diffusivity (i.e. the particle dispersion 
coefficient) which characterizes the tendency of the particle to disperse in the 
turbulent flow field. 

This ‘phenomenon ’ is rather unphysical. While the initial disturbance may 
influence the individual particle trajectory, i t  should have negligible effect after a 
long period of time and, on average, should not affect the ability of the particle to 
disperse in turbulence. Since the influence of the initial disturbance on the long-time 
diffusivity is absent when only the Stokes drag and the constant body force are 
considered, it is apparent that the Basset force term, as it appears in (l), causes the 
initial disturbance to contribute to the long-time diffusivity. As shown by Reeks & 
Mckee (1984), the integration kernel, ( t  - T)-;, causes the contribution of the initial 
velocity difference to decay like t-b as t +  00, while the displacement of the particle 
grows as ti when t -+ 00. An apparent diffusivity results since the diffusivity is equal 
to the ensemble average of the product of the velocity and the displacement. 

It has been suggested that part of the contribution to the long-time diffusivity 
found in the analysis of Reeks & Mckee (1984) could be associated with an additional 
term that is needed in Maxey & Riley’s equation to account for a non-zero initial 

F = 67c,~aU,e-’”~’[l+ ( 1  -i) (wa2/2v)b-i+a2/2v], 
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velocity difference (M. R. Maxey 1990, private communication). However, Reeks & 
Mckee’s (1984) arguments compellingly suggest that the slow decay of the Basset 
term kernel would continue to create a finite contribution that arises from velocity 
differences that exist at times beyond the initial starting transient. 

The foregoing considerations naturally bring the validity of the expression for the 
Basset force in (1)  into question. From the physical point of view, it seems that the 
memory of the Basset force term is too long, and the initial transient does not decay 
fast enough at  large time. In fact, it is found by Ockendon (1968) that a valid, low- 
Reynolds-number asymptotic expansion in the large-time limit gives an unsteady 
drag much different from that predicted by the unsteady Stokes equation. Sano 
(1981) considered the unsteady flow field induced by a sudden translation of a sphere, 
which maintains a constant velocity afterwards, at  low Reynolds number using a 
matched asymptotic expansion. He found that the drag on the sphere decays as t-a 
initially, as the Basset solution predicts, and as t-2 at large time. This particular case 
clearly suggests that the Basset force in (1)  is not uniformly valid for all times. 

Since the unsteady drag in the time domain can be obtained through Fourier 
transformation of the unsteady drag in the frequency domain in the Stokes flow 
regime, and the large-time behaviour is dictated by the low-frequency behaviour, 
the question must focus on the low-frequency behaviour of the unsteady drag, 
especially the second term in (2), which is the Basset force coefficient in the frequency 
domain. Specifically, 

(i) does the frequency-dependent part of the drag coefficient go to zero as d when 
w + O  as the Stokes solution predicts? 

(ii) If not, what causes the behaviour to be different from the Stokes solution and 
what is the correct behaviour of the Basset force at  very small frequency ? 

(iii) What is the correct behaviour of the memory term in the time domain ? In 
particular, if, as we expect, the true memory kernel has to decay faster than t-1 in 
order to avoid having a finite contribution to the diffusivity from the initial 
disturbance, how fast does the disturbance decay a t  large time ? 

(iv) Since cases for Re larger than one are often encountered in engineering 
applications, how does the unsteady drag behave as Re increases ? 

In this paper, questions (i), (ii) and (iv) will be answered using a finite-difference 
solution of the unsteady NavierStokes equation for uniform flow over a stationary 
sphere at  finite Reynolds number with small fluctuations in the magnitude of the 
free-stream velocity. The dimensionless unsteady NavierStokes equation is 
examined. A brief discussion of the relative importance of the three terms, i.e. the 
unsteady, convection and diffusion terms, indicates that complete neglect of the 
convection term in the entire flow field at low Reynolds number leads to incorrect 
behaviour of the unsteady drag a t  very small frequency. The solution to the 
unsteady flow field is then obtained by decomposing the solution into a steady part 
and a fluctuating part which is much smaller in amplitude than the steady one. The 
equation which governs the fluctuating flow field can therefore be linearized and the 
resulting fluctuating flow field remains a single harmonic. Both the steady and 
unsteady parts are solved using a finite-difference technique developed by Mei & 
Plotkin (1986). The dependence of the unsteady drag on the frequency of the 
fluctuation is examined for frequencies ranging from zero to values where the 
asymptotic behaviour can be observed. 

From the numerical results, it is found that the unsteady drag due to the 
fluctuation can be further decomposed into three parts : a quasi-steady component 
which is a nonlinear function of Re and is independent of frequency ; a force due to 
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the added mass and the acceleration of the stream velocity which is linearly 
proportional to the frequency and is independent of Re;  and the modified Basset 
force which increases with frequency and decreases as Re increases. The modified 
Basset force increases linearly with frequency w when the frequency is very low and 
increases asymptotically as the square root of frequency, d, when the frequency is 
large. This means that the classical Basset force obtained by solving the unsteady 
Stokes equation is valid only at  asymptotically high frequency when one considers 
small but non-zero Reynolds number. Therefore the integral expression of the Basset 
history force in the time domain, as it appears in ( l ) ,  is valid only for the relatively 
short time period of (t' - 7 ) .  In terms of the long-time behaviour, the modified Basset 
force in the integral form should have a kernel which decays faster than (t'-T)-i. 

It is also found that the force due to the added mass in the present finite-Reynolds- 
number (0.1 < Re < 40) case is the same as predicted by creeping flow and potential 
flow theories and remains a useful concept in this range of Re. As the Reynolds 
number increases, the computed Basset force decreases for any fixed Stokes number, 
8 = (wa2/2v)i ,  with the Stokes solution being the upper bound. The results of the 
present study can also be used to assess the influence of turbulence on the drag of a 
sphere which is either fixed or settling in a turbulent flow. 

In a subsequent paper, the remaining question (iii) raised above will be addressed. 
A matched asymptotic solution of the same problem but a t  low Reynolds number 
and very small Strouhal number, with correspondingly low frequency, is obtained. 
The combination of this solution, the present results, and the Stokes solution for the 
unsteady Stokes equation at  large Strouhal number, or high frequency, will be used 
to approximate the unsteady drag in the time domain. 

2. Formulation 
2.1. Inadequacy of the Stokes equation for low-frequency unsteady jlow 

In what follows, we consider an unsteady flow past a stationary sphere with the free- 
stream velocity being in the form of U( 1 + a1 e@"). In terms of the dimensional 
stream function-vorticity, ($' , c), formulation, the unsteady Navier-Stokes 
equation for axisymmetric flow in spherical coordinates (r ' ,  8, q5) is 

-(cr'sinO)+sinO a [a" -- a ( - ' ) a' a ( - ' )] = v9'2(cr'sin8), (3a )  
at' at-' a8 r' sin8 a8 ar' r'sin8 

with (4) 

The boundary conditions for $' and c are 

on r' = a, ( 5 4  

' = ' = O  on O=Oandx,  (5b)  

+' + tU( 1 + a1 e+"') r'2 sin2 8 ( 5 4  

r = / / a ,  t = t'u, u = u'/U, @ = @'/(Ua2),  5 = r a / U ,  g2 = a 2 W  (6 )  

and define y = rsin0, g = [ y .  (7a, b )  

$ '=7=o a t  
ar 

as r' -+ co . 
We introduce the following dimensionless quantities : 
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Then (3) becomes 

and the boundary conditions are 

on r = l  

~ = q = O  on tY=Oandx 

y?r&1+a,e-it)r2sin28 as r+m. 

In @a) ,  Re = UZa/v, St = oa/U 

are the Reynolds number based on the steady stream velocity and the diameter of 
the sphere, and the Strouhal number based on the frequency of the oscillation and 
the radius of the sphere. 

A t  this point, (8a )  is often approximated by neglecting the nonlinear inertial term 
in comparison with the viscous term for Re 4 1. The resulting linear unsteady Stokes 
equation can then be solved for arbitrary unsteady motion of the sphere. The Stokes 
(1851) solution for flow due to a sidgle harmonic oscillation of a sphere is only a 
special case for a simple geometry executing a simple motion. Unsteady motions of 
complex geometries, such as prolate and oblate spheroids, circular disk or other 
axisymmetric bodies, have been studied using the unsteady Stokes equation, as in 
Kanwal(1955), Lai & Mockros (1972), Lai (1973), and Lawrence & Weinbaum (1986, 
1988). The solutions were generally sought ,in the frequency domain. The unsteady 
drag or torque due to single .harmpic panslation'or rotation is then Fourier 
transformed to obtain the unsteady brag ih the time domain for arbitrary motion. 
However, in doing so, it is implicitly. assumed that the unsteady term, which is 
multiplied by the Strouhal number in @a) ,  is much larger than the nonlinear inertial 
term. For a fixed Reynolds numb&, no mat&qhow small, there is always a lower 
limit on St below which the nonlinear ter'm%annot .be neglected in the whole flow field 
in comparison with the unsteady term. Below that limit, both have to be neglected 
for consistency in comparison with the viscous term in the region of the flow field 
close to the sphere. This will be discussed in more detail in a subsequent paper. 

The inadequacy of the Stokes equation for the unsteady problem is now clear. 
When the drag in the time domain is sought through Fourier transformation, the 
drag in the frequency domain is needed for all values of w.  However, the behaviour 
of the drag at very low frequency may be given incorrectly by the solution of the 
unsteady Stokes equation. This leads directly to the incorrect behaviour of the 
Basset force term a t  large times, and causes the initial disturbance to give a finite 
contribution to the particle diffusivity. 

2.2. Decomposition of the solution 

As stated previously, a small-amplitude fluctuation in the free-stream velocity is 
considered, a1 4 1. A regular perturbation scheme for the flow field is therefore 
possible for (8) and (9) ,  as has been used by Lighthill (1954) and Ackerberg & Phillips 
(1972) to study unsteady boundary layers with small fluctuations in the magnitude 
of the free-stream velocity. Let 

$(r ,  8, t )  = ll.dr, 8) + a1 tit k1(r, 0 )  + O(a:), 
g(r, 8, t )  = q h ,  8) +al e-it gl(r, 8) + O(a:). 

(114 
( 1 l b )  
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From equation (8), the equations for the steady flow solution are 
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g 2 $ s  = Qs, 

and the equations governing the first-order perturbation are 

and 

g2$l = 91. 
The boundary conditions become 

ar 
$ = - - 0  w s  - on r = 1 ,  

$,=gS=O on e = O a n d x ,  

$s++r2sin28 as r+m. 

$1 = 61 = 0 on 8 = O a n d n ,  

p1 -+ &%in2 0 as r+m. 

It should be noted that (12) and (13) are possible only because a1 4 1 is assumed, 
and O(at)  terms in the steady solution are negligible. 

2.3. Coordinate stretching 
The numerical solution is performed in a semicircular ( r ,  @-domain of 1 < r < 150 
and 0 < 8 < 7c using 65 grid points in the &direction and either 65 or 129 grid points 
in the r-direction. To make best use of the grid points in the radial direction, a 
transformation is applied to place more grid points near the surface, 

(16) r = 1 + (rE - 1) { 1 - c tan-l[( 1 - x2) tan (l/c)]}. 

Here, x2 is the normal coordinate in the computation domain with 0 < x2 < 1. The 
value rE = exp(5) = 148.413 is chosen for Re = 0.1, 0.2, 1.0, and 5.0 following 
Dennis & Walker (1970), and Oliver & Chung (1985). For Re = 10, and 25, rE = 
exp (4.5) = 90.013 is used. For Re = 50,60, 100 and 130 TE = exp (3) = 20.085 is used. 
These values of rE are found to be satisfactory for the Reynolds numbers investigated 
in this study, i.e. for Re between 0.1 and 130 for steady flows, and between 0.1 and 
40 for unsteady flows. The parameter c is an 0(1 )  constant. Smaller values of c result 
in a denser grid near the sphere and larger values of c result in a more uniform grid 
distribution in the x,-direction. The value c = 0.655 is used for Re = 0.1 and 0.2, 
and c = 0.645 is used for Re = 1, 5, 10, 25, 40, 60, 100 and 130. 

Computations are carried out in a transformed plane (xl, x,) where x2 is as defined 
above and x1 is the unstretched 8-coordinate, x1 = 8. The equations (12) and (13) for 
gs, $s, g1 and $1 in the (xl,x2) coordinate system become 
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and -iStgl+h2sinxl 

where 

and 

The boundary conditions (14) and (15) are unchanged, apart from being expressed in 
the (x,, x2) coordinate system. 

In (18) g1 and $l are complex functions. It is desirable to convert (18) into the 
equations for the real and imaginary parts, 

Equations (18) become 

92($R) = gR, y 2 ( $ I )  = 91. (21c, d )  

2.4. Numerical algorithm 
The finite-difference technique is applied using the time-dependent approach 
developed by Mei 6 Plotkin (1986) for steady problems. An artificial time derivative 
a/at is introduced into (17 a) and (21 a, b) to convert the system from purely elliptic 
in space into parabolic in time and space. The discretized form of (17a) is 

Once the steady-state solutions for (gst,j, $.,,,,) are obtained, they are used in (21a,b) 
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as known coefficients to compute (gRi,,, $Rl* ,) and (gIt,,, 
for gR is 
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,). The discretized equation 

The rest of the differential equations are treated similarly. 
The iteration for g?+l starts from (i,j) = (2,2) and sweeps from x1 = 0 to x1 = I[: and 

from x2 = 0 to x2 = 1, corresponding to T = rE. Therefore the solution for gsf,5 at  
(n+ 1) is explicit. However, since the most recently unadapted values a t  (i,j- 1) and 
( i -1 , j )  are used in both the convection and diffusion terms in the difference 
equation, the scheme is, in this sense, semi-implicit. The equations governing gR,,, 
and gI,, are coupled. Therefore, they are solved as a coupled 2 x 2 algebraic system. 
Because of the semi-implicit nature of the finite-difference scheme and the low 
Reynolds number, the time-step size is not critical. In Cartesian coordinates, the 
restriction on the time step for a typical convection4iffusion equation is 
-At(u/Ax+v/Ay) < 1, which implies that the time-step size is restricted only for 
reversed flows (see Mei & Plotkin 1986). For the present case, values of At between 
0.05 and 0.3 are used for the computations of the vorticity. The convergence is 
insensitive to the value of At in this range because of the coupling of the vorticity on 
the wall with the stream functions near the wall. The iteration process is stable. 

2.5. Evaluation of wall vorticity and drag 

The function g on the wall, gwi = g,,j,l, needs to be updated at every iteration from 
the latest stream functions near the wall. A second-order-accurate method (Briley 
1971) for gwi and ui,j-2 is used for the present moderate-Reynolds-number flows, 

gi, 1 = 0.5(h2,-l/A~2)2 (S@i,j-2- @i,j=3), ( 2 4 4  

(24b) ui , j -2  = (4$i,j-2 + $ i . ~ = 3 ) / ( ~ ~ ~ 2 ) .  

The dimensional drag on the sphere consists of the frictional drag F i  due to shear 

(25) 

The relations between the dimensionless frictional drag Ff = Ff/pUa, the pressure 
drag Fp = Fp/pUa and the dimensionless wall vorticity 5 = g/y are 

stress and the pressure drag Fa due to  normal stress 

F' = Fa + F;. 

Ff = - 2n &Jr-l sin2 8 do, s: 
The integrals in (26) are evaluated numerically with second-order accuracy. 
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3. Results and discussion 

state drag Fi and a fluctuating drag a, e-'"'F;, 
For the present problem it is instructive to decompose the total drag into a steady- 

F'(t') = FL+a,e-'"'F;+O(a~). (27) 

Since Fi = 67cpUa (28) 

for steady Stokes flow, it is convenient to normalize (27) as 

D(t )  = F'/(GnpUa) 

= D,(Re) + a1 e-itD,(Re, St) 

= D,(Re) + a1 e-it (DIR + i&). 

3.1. Steady drag at finite Re 
In the Stokes regime, D,(Re) --f 1 as Re 0. The relation between the D, and Re 
computed here is shown in figure l ( a ) .  Comparisons of present results with the 
numerical results of Dennis & Walker (1971), Le Clair, Hamielec & Pruppacher 
(1970), and Fornberg (1988) are shown in figure 1 ( b ) .  An empirical correlation 

D, = 1 +0.15Re0.687 (30) 

given in Clift, Grace & Weber (1978), is also presented. The present numerical results 
of steady drag at moderate Reynolds number agree well with the earlier published 
results. 

Typical steady flow fields are shown in figure 2 for Re = 5 ,  which is an unseparated 
flow, and for Re = 40, and 100 which are separated flows. Figure 3 shows the 
vorticity distribution on the sphere at  various Reynolds numbers along with the 
results of Dennis & Walker (1971) at Re = 10 and Woo (1971) at Re = 100 taken from 
Clift et al. (1978). 

3.2. Unsteady drag in the Stokes jlow regime 
For an oscillating sphere with velocity v1 = a, Ue-iut' in an otherwise steady stream 
with velocity U in the Stokes flow regime, the fluctuating part of the drag is the same 
as the solution given in Landau & Lifshitz (1959, p. 96), 

a,P;, = 6npa ( l + e ) v + e  l+ -e  -- , [ ( f )::I 
where E = ( ~ a ~ / 2 v ) $  = (@t Re);. (32) 

The overbar indicates that the results are for the oscillating sphere case, and the 
subscript B means that the solution corresponds to the Stokes solution of the Stokes 
equation. Consequently, 

D,, = I+(I-i)-E-ig2 (33) 

for a sphere executing an axial oscillation. In the above, the first term is from the 
instantaneous Stokes drag, the second term, (1 -i) B, is associated with the Basset 
force, and the last one is the force due to the added mass. 

For fluctuating free-stream velocity U( 1 + a, e-i'*t') past a stationary sphere, it can 
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FIGURE 1. (a) Steady and quasi-steady drag coefficients normalized by Stokes drag as functions of 
Re. The empirical correlation for the quasi-steady drag is linearized from the steady drag coefficient 
given in Clift et al. (1978). ( b )  Comparisons of the steady and quasi-steady drag coefficients with 
other numerical and empirical results. 

be shown by a coordinate transformation of the complete unsteady Navier-Stokes 
equation that 

where the additional term, - i v ,  results from the fact that the fluid, rather than the 
body, is oscillating. In $he time domain this is $nu3ppp dvldt, and it is independent of 
Re, i.e. it  holds for any flow. This term appears as $na3pp,Du/Dt in the equation of 
motion for particles with very small particle Reynolds number derived by Maxey & 
Riley (1983) and in the equation of motion for large particles (such as large bubbles 
in liquid), whose motion relative to the carrier fluid can be approximated as inviscid 
flow, derived by Auton et al. (1988). It accounts for the resultant force due to the 
total stresses of the undisturbed fluid flow acting on the surface of the sphere. In the 
present case, the ambient flow surrounding the sphere is assumed uniform. The force 
associated with Du/Dt is purely from the fluctuation of the stream velocity. 

D,, = l+(l-i)e-if+-2-i$zz, (34) 
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FIGURE 2 Streamlines corresponding to @ = 0, 0.005, 0.025, 0.1, 0.3, 0.8, 1.4, 2.2, 3.2, 4.5 and 
7.8 for steady flow past a sphere at (a) Re = 5;  ( b )  Re = 40; and (c) Re = 100. 

Consequently, the difference between D ,  and D, or between DIB and DIB, is - i v .  
Using the Stokes equation, the Stokes solution for the present case of a fluctuating 
free-stream velocity leads to 

D,, = 1+(1-i)e-i+2 

3.3. Unsteady drag at finite Re 

The classical Stokes solution (35) is valid for Re+O and finite e relative to Re, but 
arbitrary amplitude of the free-stream oscillation, a,. In contrast, the present 
solution is valid for finite Reynolds number (including cases with separated flow), but 
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FIQURE 3. Vorticity distribution on the sphere at Re = 0.1, 10, 40, and 100. Comparisons are 
made with Dennis & Walker (1971) at Re = 10 and with Woo (1971) at Re = 100. 
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FIGURE 4. Real part of the unsteady drag D,, as a function of B at various Reynolds numbers. 

small ul. We shall discuss the behaviour of the present solution by comparing it 
directly to the Stokes solution. 

The real part of the unsteady drag DIR is shown in figure 4 as a function of E .  It 
can be decomposed into a quasi-steady component DIRQs that is defined as the value 
of D,, at zero frequency, i.e. E -+ 0, and a component that depends upon E and hence 
frequency. We refer to that latter component as the acceleration-dependent component 
D,,,, because its value is determined by the amplitude of dvldt. For example, the 
Stokes solution of the unsteady Stokes equation yields an unsteady drag, equation 
(35), in which the quasi-steady component is DIBRQs = 1 and the acceleration- 
dependent component is D,,,,, = E corresponding to the real part of the Basset 
force term. The present solution yields an unsteady drag whose quasi-steady 
component varies with Reynolds number as shown by the limiting values of the drag 
in figure 4 as c approaches zero. In general, the quasi-steady drag, DiRQS, is 
independent of St but depends on Re and it can be obtained by computing the drag 
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FIQURE 5. Real part of the computed Basset force D,,,, as a function of e at various Reynolds 
numbers. (a) Linear plot; ( b )  log-log plot. 

at zero frequency. D,,,, can then be found easily by subtracting DlRQs from 

linearizing the total drag using the steady-state drag coefficient and the instsn- 
taneous velocity 

6npaU( 1 + a1 e-'wt') { 1 + 0.15[Re( 1 + a, e-iw')]o.687} 

for small al. The comparison between the DIRQs computed here and the above 
empirical result is shown in figure 1 (a, b). The agreement is close over a large range of 
Reynolds number, as expected. The deviation at Re < 1 is solely the consequence of 
the poor agreement on a log-log scale between the empirical correlation and the 
computed steady drag. 

In  figure 5(a) ,  DlRAc is shown as a function of E for different values of Re. It can 
be seen that for small Reynolds number (Re - O . l ) ,  DlRAC is indistinguishable from 
DlBRAC = E ,  the Stokes solution, at finite values of e.  For Re 3 1.0, DIRAC is less than 
DlBRAC = E for all values of E ,  and DIRAC+DIBRAC = E asymptotically only when 

DIR.  Empirically, DIRQs can be obtained as DIRgs = 1 + 0.15( 1 + 0.687) Re'.'"' b Y 
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FIGURE 6. Imaginary part of the unsteady drag D,, as a function of 8 a t  various 
Reynolds numbers. 

E +  00. The difference between D,,,, and D,,,,, as a function of E depends on Re. 
D,,,, decreases with increasing Reynolds number leading to larger differences with 
the Basset term. As c+O, figure 5 ( b )  indicates that D,,,, approaches zero as E*, 

much faster than the first-power dependence of the Basset term. Figure 5(a ,  b )  also 
shows that the Stokes solution is valid only for relatively large values of E (or w ) .  

Comparison of the imaginary part of the unsteady drag, D,,, obtained from the 
unsteady Navier-Stokes equation, with D,,, = - ( E + $ E ~ )  from the Stokes solution is 
revealing. For large E ,  DIBI + -$e2 asymptotically. Figure 6 shows the computed drag 
D,, and the Stokes solution D,,, as functions of E for different values of Re. For a fixed 
Re, the difference between D,, and D,,, a t  large E is small compared with D,,,. 
Therefore, both D,, and D,,, have the same asymptote, -@*. This asymptote, as it 
appears in figure 6, is the same for all Re. Through coordinate transformation, which 
is independent of Re, the asymptote for Dl,, the imaginary part of the unsteady drag 
of an oscillating sphere in a steady stream, can be obtained as - is2.  This means that 
the force due to the added mass for an oscillating sphere at Jinite Re in the range 
investigated here is the Same as in the creeping flow regime (Re+O) and in potential 
flow, at least for high-frequency oscillations, in contrast to some of the findings about 
added mass force cited in the review by Torobin & Gauvin (1959) which stated that 
‘The added mass concept is shown to be both completely inadequate and 
theoretically unsound ’. 

If -$e2 is subtracted from the Basset drag D,,, the remainder is - E for all values 
of c. In  figure 7 (a ) ,  A ,  3 - (Dl,  + g2) is shown as a function of 8 for various Reynolds 
numbers. A trend similar to that observed for D,,,, is observed for A ,  also. For the 
Stokes solution, A ,  = E is the imaginary part of the Basset force. For small Re ( - O.l),  
the difference between A ,  and E is indistinguishable graphically for a wide range of 
finite E .  For finite Re, the calculation indicates that A ,  is consistently less than 
A,,  = E for all values of E and A I + A I B  asymptotically as E +  00. The difference 
between A ,  and A,, also depends on Re. It is interesting to note that, for finite Re, A ,  
becomes proportional to e2 instead of E as E + 0. Figure 7 (b)  shows A ,  as a function of 
E at various Reynolds numbers in log-log coordinates. For small values of E ,  the e2 
dependence of A ,  is clear. Figure 7 (c) is a blow-up of figure 7 ( a )  as E + 0. Again, the 



Drag on a sphere with fluctuations in the free-stream velocity 627 

5 

4 

1 

0 

- Stokes 
Re = 0.1 

i 2 4 
E 

. E  

0.03 

0.02 

4 1  

0.01 

0 

Computed; Re = 0.1 
Computed; Re = 0.2 

--Parabola fit; Re = 0.1 
-Q Parabola fit; Re = 0.2 

0.01 0.02 0.03 
E 

FIQURE 7. Imaginary part of the computed Basset force A,, as a function of 6 at various Reynolds 
numbers. (a) Linear plot; (b)  log-log plot. (c) Blow-up of A,,  at small E showing the 2 dependence 
of A,, for Re = 0.1 and Re = 0.2. 

ez dependence of A ,  for small E is clearly demonstrated. The behaviour of D,,,, and 
A ,  at small e indicate that the leading-order term of the acceleration-dependent part 
of D,  is proportional to the Strouhal number, St, or the frequency w rather than 
8 N 3 as St+O or O + O .  



628 R .  Mei, C. J .  Lawrence and R.  J .  Adrian 

The behaviour of D,,,, - e4 - St2 and A ,  - e2 - St a t  small E or St can be 
explained qualitatively by examining equation (21) for g R  and g I .  For finite Re and 
very small St (strictly speaking, St < min (1, Re)),  the solution for gR and gI may be 
expanded as 

gR = gR1 +St2g,2 + h.0.t. 

and g, = Stg,, + h.0.t. 

gR1 is the quasi-steady solution due to the inhomogeneous boundary conditions at  
infinity and is O(1). Both g,, and gR2 have homogeneous boundary conditions at  
infinity and the same homogeneous operators (i.e. the spatial derivatives). The 
leading-order term in g, ,  i.e. Stg,,, is solely due to the driving term, StgR1, in (21 b) .  
The St2gR2 term in the expansion of g R  is driven by Stg, - St2g,, and i t  can be solved 
after g I 1  is obtained. Therefore, DIR-DIRQS = DiRA, = O(St2) and D,, = O(St) for 
St 4 1. The leading term of the acceleration-dependent unsteady drag is therefore 
from the imaginary part D,, = O(St). 

It should be noted that a t  very small frequency, the imaginary part of the 
unsteady drag, D,, or A,,  approaches an asymptotic limit, 0.75St, for St Q Re 6 1 .  An 
analysis leading to this asymptotic result using the method of matched asymptotic 
expansions will be presented in another paper. 

The differences in DIRAc and A ,  between the present result and that of the Stokes 
solution a t e  < 1 may also be explained physically as follows. In  the Stokes equation, 
the diffusion term is balanced by the unsteady term. There are two lengthscales, 1 
and 1 / ~ ,  with the radius of the sphere being one. The ratio of the two lengthscales is 
the Stokes number E .  The flow field may be divided into two regions according to E .  

The vorticity is confined in the region r - 1 < O( i / ~ ) ,  the Stokes layer. I n  the region 
r -  1 > O ( l / s ) ,  the flow is essentially irrotational. At very low frequency, this Stokes 
layer is very large. When the nonlinear convection term is included, an additional 
lengthscale is introduced, i.e. 1/Re. At low Re, the convection balances the diffusion 
in transporting the vorticity in the Oseen region, O(l /Re) ,  in the steady state, and 
the vorticity becomes very small a t  r - O( l /Re ) .  I n  unsteady flow with very small E ,  

say E <Re ,  the vorticity, which is generated on the wall, is already very small a t  
T - O(i /Re) .  Thus, the Stokes layer, which extends outside the Oseen region, becomes 
less important to the vorticity transport. The effect of the unsteadiness on the 
unsteady drag at low but non-zero Reynolds number is, therefore, much smaller than 
in the case of zero-Reynolds-number unsteady flow. At high frequency, with E B Re 
if Re is small or e B Re4 if Re B 1 ,  the Stokes layer is very small compared with the 
Oseen region or the boundary layer. Because the vorticity is confined in the Stokes 
layer where diffusion dominates the vorticity transport, the role of convection 
diminishes and the unsteady drag can be predicted using the Stokes equation. 

When Fourier transformation is applied to obtain the drag in the time domain, the 
long-time behaviour of the drag based on the full Navier-Stokes equation will be 
rather different from that predicted by the Stokes solution because of the difference 
in the small-frequency behaviour (according to the Abelian theorem). Since D ,  is 
proportional to w instead of "4, the corresponding Basset force term in the time 
domain must have a kernel function decaying faster than ( t - T ) - f ,  as i t  appears in ( l ) ,  
€or large ( t -7) .  However, since D,,,, and A ,  are both asymptotically proportional to 
wi a t  high frequency (s-too), the short-time behaviour of the drag should be as 
predicted by the Basset solution, even for finite Re, i.e. the kernel function behaves 
as (t - ~ ) - f  for small values of (t - 7) .  The appropriate expression €or the Basset force 
in the time domain will be proposed in a subsequent paper, based on a matched 
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asymptotic solution of the same problem at low Re and very small St, the present 
results, and the Stokes solution at  high frequency. 

Since DlRAC and A ,  are both consistently less than e ,  it is concluded that the use 
of the classical Basset force obtained from the Stokes solution of the unsteady Stokes 
equation would overestimate the actual Basset force for finite Re in both time and 
frequency domains. This implies that in the studies of particle dispersion in 
turbulence, where the particle Reynolds number increases as particle inertia gets 
larger, the effect of the Basset force on the particle motion would decrease when the 
particle Reynolds number, or the inertia of the particle, increases. Furthermore, as 
the particle Reynolds number increases, the quasi-steady drag, DIRQS, increases 
rapidly. This means that the important component of the unsteady drag at  large 
Reynolds number and finite Stokes number, e, is the quasi-steady drag which is 
determined at zero frequency. 

As shown in Mei, Adrian & Hanratty (1991), the classical Basset force derived from 
the Stokes equation has little effect on the diffusivity of particle motion in general, 
and it affects only slightly the intensity of particle motion in isotropic turbulence 
when the particle settling velocity and the Stokes number e are large and the ratio 
of the particle response time to the turbulence integral timescale is around one. 
Therefore, its effect on the particle dispersion at larger Reynolds number, or larger 
inertia, may be neglected, and the quasi-steady drag alone may be sufficient to 
capture the important features of the unsteadiness of the flow around the particle. 
Since the quasi-steady drag is derivable by linearizing the steady-state drag, its effect 
is automatically represented by using the steady-state drag coefficient and the 
instantaneous relative velocity when the fluctuation in the stream velocity is small. 

On the other hand, in some applications, the effect of the Basset force may become 
critically important and the Basset force must be kept in the equation for particle 
motion. For example, Leichtberg et al. (1976) found a significant effect of the Basset 
force on the interaction among three coaxially settling spheres at low but non-zero 
Reynolds numbers. In  their study, the Reynolds number is of the order of 0.01 and 
the ( t - ~ ) - f  behaviour of the Basset force may be correct for a period of time which 
is longer than the whole period of the interaction among the spheres. 

4. Conclusions 
A finite-difference solution of the NavierStokes equation has been obtained for 

axisymmetric flow over a stationary sphere a t  finite Reynolds number with small 
fluctuations in the free-stream velocity. The unsteady drag due to the oscillation in 
the stream velocity is examined and compared with that found from the classical 
Stokes solution of the unsteady Stokes equation. At finite Reynolds number the force 
due to the added mass is the same as in creeping flow and potential flow. The 
acceleration-dependent force computed at finite Re is linearly proportional to the 
square root of the frequency only at high frequency (corresponding to the Stokes 
solution for low Reynolds number motion). At small frequency it is linearly 
proportional to w .  The classical Stokes solution is not uniformly valid for all w even 
for small, non-zero Re. The Basset-force term in the time domain has a kernel which 
must decay much faster than ( t - ~ ) - i  at large time. In the presence of the Basset 
force, the unphysical result obtained by Reeks & Mckee (1984) wherein the initial 
velocity difference between the particle and the fluid having a finite contribution to 
the particle long-time diffisivity may be due to the incorrect behaviour of the 
classical Basset force at large time. The classical Stokes solution in general seems to 
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give an ‘ upper bound’ for the unsteady drag coefficient in the frequency domain. As 
Re increases, the numerically computed Basset force decreases in amplitude (DIRAC 
and A, )  significantly at small frequencies ( E  - 1) and the Basset force term becomes 
smaller in comparison with the quasi-steady drag. 

The authors wish to thank Professor Thomas J. Hanratty for his encouragement 
and stimulating discussions. This work was supported by the Multiphase Flow 
Research Institute through Argonne Contract No. 82862403 and was partially 
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